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Abstract—A ‘two-fluid model' using the thermal eddy diffusivity concept and Lumley’s drag reduction
theory, is proposed to analyse heat transfer of the turbulent dilute gas—particle flow in a vertical pipe with
constant wall heat flux. The thermal eddy diffusivity model is derived to be a function of the ratio of the
heat capacity—density products 5C, of the gaseous phase and the particulate phase and also of the ratio of
the thermal relaxation time scale to that of turbulence. Lumley’s theory is applied to find the variation of
the viscous sublayer thickness depending on the particle loading ratio Z and the relative particle size 4,/D.
At low loading ratio, the size of the viscous sublayer thickness is important for suspension heat transfer,
while at higher loading, the effect of the ratio E;Cpp/p—fq, is dominant. The major cause of decrease in the
suspension Nusselt number at low loading ratio is found to be due to the increase of the viscous sublayer
thickness caused by the suppression of turbulence near the wall by the presence of solid particles. Predicted
Nusselt numbers using the present model are in satisfactory agreement with available experimental data
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both in the pipe entrance and the fully developed regions.

INTRODUCTION

IT 18 WELL known that the addition of small solid
particles to a gas flow in a pipe either increases or
decreases the heat transfer through the pipe wall
However, there is still great controversy in explaining
the effect of the presence of small particles on the heat
transfer. Farbar and Morley [1] and Wilkinson and
Norman [2] reported that the suspension Nusselt
numbers were significantly increased by the addition
of solid particles. On the contrary, Farbar and Depew
[3], Depew and Farbar [4], Wahi [5], and Boothroyd
and Haque [6, 7] found that it first decreases to a
minimum value at a certain low solids—gas loading
ratio and then increases with the loading ratio. Such a
complicated variation of the heat transfer coefficient
in the gas—particle suspension flow is not yet sys-
tematically understood. Only empirical correlations
are hitherto available for estimation of the suspension
Nusselt number through the pipe wall.

Recently, Kane and Pfeffer [8] explained the
reduction phenomenon of the suspension Nusselt
number by a thickening mechanism of the viscous
sublayer under particle presence. On the other hand,
Tien [9] who first analytically treated suspension heat
transfer, found that the presence of the particles in the
flowing stream prolongs the thermal entrance region
and that the rate of heat transfer is governed by the
heat capacity—density ratio ;;;CI,P/TD;CPF; increase of
the ratio augments the suspension heat transfer.

Michaelides and Lasek [10, 11} developed one-
dimensional models to describe the behaviour of par-
ticles in air flow. However, because they used an exper-
imental correlation about the augmentation of the
suspension heat transfer, the reduction of the sus-
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pension heat transfer could not be predicted by their
model. Abou-Arab and Abou-Ellail [12, 13] applied
a recently developed two-phase k— model to analyse
the heat and momentum transfers. The two-phase k-
model yielded only slight reduction in heat transfer.
Recently, the present authors [14] modified Lee and
Chung’s model [15] with Lumley’s drag reduction vis-
cous sublayer theory [16] to analyse the momentum
transfer of Boothroyd’s experiments [17]. Their results
showed the correct reduction behaviour of the drag
in gas—particle flows.

The objective of this study is to extend the analysis
of the previous study of the present authors [14] to
investigate the heat transfer characteristics of an
upward gas—particles flow for various relative particle
sizes d,/D and loading ratios in a vertical pipe under
a uniform heat flux condition.

GOVERNING EQUATIONS FOR GAS-
PARTICLE SUSPENSION FLOW

In the present study, the ‘two-fluid model” approach
is adopted to analyse the heat transfer in a vertical
pipe which carries small size particles at relatively low
particle loading. The concept and the limitation on
the two-fluid model is described in detail in Ishii [18].

The volume-averaged continuity, momentum, and
energy equations for both phases in cylindrical coor-
dinates can be obtained in the following forms by
performing the conventional Reynolds averaging of
their governing equations for an instantaneous field
[18, 19].

The mean governing equations for the gaseous
phase (f) are:
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NOMENCLATURE
A cross-sectional area of pipe W mass flux
A van Driest damping constant : axial distance
Ape  dragreduction viscous sublayer thickness ¥ distance from the wall
C, specific heat for constant pressure Z solids—gas loading ratio. W,/ W
D pipe diameter or van Driest damping
function Greek symbols
d, particle diameter % volume fraction
F,.. F, Stokesian drag forces in the axial %q laminar thermal diffusivity of the gaseous
and radial directions phase
g gravitational acceleration dyy  boundary layer thickness
h, local heat transfer coefficient for § ratio of sublayer thickness under particle
suspension flow loading to that in the clean fluid
K, model constant £ dissipation rate
£y ratio of viscous cutoff wave number & &, kinematic eddy viscosities
under particle loading to that in the 0 fluctuating temperature
clean fluid K von Karman constant
ky thermal conductivity for the gaseous A, A, thermal eddy diffusivities
phase vp. ¥ kinematic laminar viscosities of the
I characteristic length scale for the gaseous gaseous and particulate phases
phase flow o5 density of gas
Nu  Nusselt number A density of particle
Nu, suspension Nusselt number or bulk density of gaseous phase, pe(1— )
P static pressure Po bulk density of particulate phase, p.o
Pry  turbulent Prandtl number T* thermal characteristic time scale.
Q,  heat transferred from the particulate
phase to the gaseous phase Subscripts
q" local pipe wall heat flux c pipe centre
Re Reynolds number based on pipe diameter DR drag reduction
Re, particle Reynolds number f gaseous phase
r radial distance from the pipe axis ] laminar
s viscous cutoff frequency o clean fluid
§ ratio of viscous cutoff frequency under p particle laden, or particulate phase, or
particle loading to that in the clean bulk property
fluid S solid
T averaged mean temperature w wall.
1 Lagrangian integral time scale
t* particle relaxation time scale Superscripts
U,V average mean velocity components in the + non-dimensionalized wall coordinate
axial and radial directions " ratio of relevant physical quantities of
u', v’ fluctuating velocity components in the suspension fluid to clean fluid

axial and radial directions

fluctuating quantity.
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The mean governing equations for the secondary
particulate phase (p) are:
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Heat transfer by radiation is neglected for the
present study in which the temperature difference
between the gaseous and particulate phases is
assumed small.

In the momentum equations for both phases, F,,
and F,, are the interaction forces between both phases
in the axial and radial directions which are approxi-
mated by the Stokes drag law with a correction factor
due to the presence of the wall [14, 20]. In the energy
equations Q, is the heat transferred from the par-
ticulate phase to the gaseous phase. Similar to the
interaction forces, the interactive heat transfer Q, is
proportional to the temperature difference [21]

0, = f—;acpp(rp -T) )

where t* is the thermal relaxation time which is
defined and approximated by

ngst Prf Cp
= "= 3 () H140.15ReDSH.
6Nu, k; 3<Nup>(cpr) [140.15Rer ]

(10

Here, C, and C, are the specific heats of the gaseous
and partlculate phases respectively, for constant press-
ure and * is the particle relaxation time. Further,
the particle Nusselt number for the small particle
Reynolds number is represented by the correlation
formula [22}

Nu, = 2+0.6Re)> Pri>’ (1)

which is known to be valid for Re, < 700.

TURBULENCE MODELS FOR GAS-PARTICLE
SUSPENSION FLOW

The turbulence closures for the time averaged pro-
ducts uy, u;,v;, o'vr, and o'z}, are made by assuming
scalar eddy diffusivities, & and e,,. for the gaseous and
particulate phases, respectively, the derivations of
which are explained in detail in a previous paper [15].
At the same level of closure, the turbulent heat transfer
correlations may be represented by the following
scalar transport hypothesis:

_ aT,
vl = —zﬁaf (12)
_— o7,

b, = — A, ’57 (13)

where 4; and 4, are the thermal eddy diffusivities of
the gaseous and the particulate phases, respectively.

Eddy viscosity models

The ratio of the scalar eddy viscosity in the particle
laden flow & to that in the clean gas flow ¢, is approxi-
mated by a model derived in ref. [15] which is based
on the assumption of the state of local equilibrium
between the production and dissipation of the tur-
bulent kinetic energy for the gaseous phase

1 1/2
& / (14)

o ! €
1+C;,g’i‘i ;<1— i’)
o ! &
where 4 is the turbulent time scale and C;,
constant of about 3.5.
The eddy viscosity of clean gas flow & is estimated

from the mixing length model using the van Driest
damping function D as

. 1S a model

&, = KX (R—r)*D?

Ca,g‘) (1 5)
K

gﬂ for(R—r) <
dr

)
=a Re’ vy for(R—r)>C% (16)

where { is selected such that the numerical value of g,
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should be matched smoothly between equations (15)
and (16) at their interface.

The van Driest damping function D in equation
(15) is given by

D=(—exp(—~yT/47)). {a7n

In the previous study [14] using Lumley's drag
reduction model [16] for the analysis of momentum
transfer in two-phase pipe flows, it has been shown
that the damping ‘constant’ 4™ which represents the
effective non-dimensional thickness of the viscous
sublayer depends on the loading ratio. the particle
relaxation time scale and the Kolmogoroff time scale.
The same approach for estimating 4™ in ref. [14]
is used in the present study, which is rather briefly
summarized as follows.

When the frequency of the particle inertia phenom-
ena (= 1/t*) is smaller than the viscous cutoff fre-
quency s, the rate of energy dissipation for gas—par-
ticle suspension flow is modelled as follows [14]:

1 :r“zsl+ 1.8C e(m/2—1)0.7451%) 1-% —: (18)
where C is a model constant of about 1.2 and v, the
kinematic viscosity for a gaseous phase. The first term
represents the viscous dissipation by the presence of
particles and the second term approximates the rate
of energy dissipation due to the fluctuating relative
velocities per unit mass of the bulk fluids, and the
right-hand side of equation (18) is the rate of dis-
sipation for suspension flow.

Near the viscous sublayer, the turbulent Reynolds
number is very small, and thus, the peak of the dis-
sipation spectrum and the peak of the spectrum of the
energy containing eddies approach the same order
(see Fig. 7.6 in ref. [16]). Lumley [16] proposed that
the viscous cutoff wave number under particle loading
is proportional to [(s/v)(1+2Z)]"" and the ratio of
the viscous cutoff wave number &, of the suspension to
that in the clean gas flow is given by £y = [$(1 +2)]".
where § = s(vq/e}"". Further, it is proposed that since
the ratio of sublayer thickness under particle loading
to that in the clean gas flow & is £7*7, the drag
reduction viscous sublayer thickness 45, can be ex-
pressed as follows:

A =858 = 85 kg (19)
where 87 is the viscous sublayer thickness in clean gas
flow.

Since it is assumed that the turbulence is suppressed
by the presence of particles, 47 must be greater than
or equal to that of the clean gas flow. Thus, the present
authors [14] proposed that the damping constant may
be determined as follows:

At = AT
AT = Afe

for AT > Age (20)

otherwise @2n

where A7 is an effective viscous sublayer in clean gas
flows. It is found that the above model equations (20)

and (21) yiclds the best agreement with the eaper-
imental data [17] in the previous study [14].

The eddy viscosity of the particulate phasc «, and
the virtual laminar kinematic viscosity of the par-
ticulate phase v, are modelled by the proposal given
in ref. [23].

Thermal eddy diffusivity models

The thermal eddy diffusivity of the gaseous phase
4 due to the suspension of particles can be derived
using the similar method for deriving the scalar eddy
viscosity ¢ [15]. From the governing equation of the
mean temperature variance 67 for the gaseous phase,
the production term P, and its dissipation term ¢, can
be approximated as follows:

—, [dT:Y
Py = prag <drE> (22)
a8, a6, P G —
b= pin oK Ci“ofwr»ep) (23)
Pt

where ag is the laminar thermal diffusivity for the
gaseous phase and the bulk density of the particulate
matter is assumed to be constant.

Using appropriate relations

0y ~ Iy, dTy/dr
00; 00, 02
e o S,
and
Pre = kil

the assumption of the local state of equilibrium of
the mean temperature variance for the gaseous phase
(P, = &) yields the thermal eddy diffusivity as fol-
lows:

&y PrTﬁ-
S Pry =] - — | (24
2 o n G, 0

PrT«.» * Pr Cl'r 6(‘2

where o is a model constant of about 1.0, /, the
thermal characteristic length scale for the gaseous
phase, and Pry, the turbulent Prandtl number of the
clean gas without particles.

The ratio of the temperature variances 53/5? in the
above equation (24) is modelled by Tien [24] as

(25)

The modelling of Pry_is done by a correlation
formulae proposed by Crawford and Kays [25]
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BZ
Pry = [—-i- +0.2B Pe

1
~(0.2Pe)2{1~exp (5'5}@)}] . {26)

Here, Pe is the turbulent Peclet number and B an
empirical constant of about 1.08.

The turbulent Prandtl number for the particulate
phase Pry_is taken to be 0.9 according to Abou-Arab
and Abou-Ellail [13].

Finally, the concept of virtual laminar thermal
diffusivity of the particulate phase needs some delib-
eration. It can be safely assumed that, since the par-
ticles and the wall are pointly contacted, direct heat
transfer from the hot wall to the solid particle near
the wall is practically negligible. Therefore, it may be
assumed that the particulate phase does not have any
virtual laminar thermal diffusivity. A consequence of
this view of the heat transfer mechanism is that the
temperature rise of the solids lags behind that of the
gas; i.e. the gas temperature rises first and then the
particle temperature rises due to the heat transfer
between particles and the surrounding heated gas.

BOUNDARY AND INITIAL CONDITIONS

Due to the no-slip condition at the wall, the wall
boundary conditions of the gaseous phase are given
by

U=Vi=0; T;=T,. @7
On the other hand, the particles may be in slip motion
at the wall. Assuming that the particle mass is con-
centrated pointly at the centre of the particle, particles
cannot exist in the region within the distance from the
wall smaller than the radius of the particle. Therefore,
the velocities and temperature for the particulate
phase at the wall may be approximated as follows:
Up = Uf

;sdpvl

v V=0

T, =T

£ = 2" (28)
For the wall boundary condition of the concentration
for the particulate phase, a Neumann condition,
dp,/dr = 0, is specified for mathematical simplicity.

On the axis of symmetry, the symmetry conditions
are imposed on Uy, U, Ty, T, and p,,. In addition, the
radial velocities V¢ and V, are set to zero.

The velocity profiles for both phases and the par-
ticulate density profile in the fully developed region
without heat transfer, which were calculated by the
present authors [14], were used as the inlet conditions
into the heating section. The suspension local Nusselt
number is defined as

h.D §'D

Nus = -‘Ef— = ﬁw - Tmm)kf‘

29

Here, the mixed mean temperature of the suspension
T ..o (x) 1s calculated using

jCP@?Ufo dA+ j G, ppU, T, d4

Tl X) = (30)

fc,,r}}}Uf dd+ f C, p,U, d4

The thermal conductivity of the gaseous phase &; is
evaluated at the film temperature (T, + T} )/2 [6. 71

COMPUTATIONAL RESULTS AND
DISCUSSION

In order to verify the accuracy of our thermal eddy
diffusivity model, together with Lumley’s drag reduc-
tion theory, computations are carried out for the ex-
periments of Boothroyd and Haque [6, 7] with an
average particle size of 15 um at a gas Reynolds
number of 53 000.

Figure 1 compares predicted suspension Nusselt
numbers with the experimental data [7] in the fully
developed region (x = 3.048 m) with constant wall
heat flux (§” = 2888.3 W m™?). As the relative particle
size d,/D increases, the suspension Nusselt number
in the case d,/D = 5.9I x 10~* is markedly reduced
below the value for clean gas flow. At the same relative
particle size, the suspension Nusselt number first
reduces and then increases with an increase in the
Joading ratio. These phenomena are similar to those
of the skin friction factor in Fig. 2 of ref. [14].

Figure 2 shows evaluations of the effective non-
dimensional sublayer thickness for the suspension
flow with and without heat transfer using equations
(20) and (21). It can be seen that 4™ with heat transfer
is less than 4™ without heat transfer. This is due to
the variation of near wall gas properties such as the
absolute viscosity and the density. Increase of the
absolute viscosity and decrease of the gas density near
the wall region reduce particle relaxation time and
augment the local density ratio (,5;/,5;}, respectively.
An increase of 4™ means stronger resistance to the

do /D Exp.
1.97x10™* o

295107 a
3F seix10™ ©

Analysis

b b d d bl

0.1 0.5 1 5 10
Loading Ratio,Z

0 b kodedeb b

FiG. 1. Comparison of predicted suspension Nusselt numbers
with those of experiments by Boothroyd and Haque [7}.



74 K. S. HaN ¢f al.

o :dp/D=5,91x10"%
2o b i a :dp/D=2.95x10“:
® a :dp /D=1.97x10"
100 ki ‘\& ——:with heat transfer

e N without heat transfer

8o H

< b
60 o
40 §
20t
0 i i i i i H L i H 1 i 1

0 2 4 6 8 10 12
Loading Ratio,Z

Fia. 2. Estimations of the effective non-dimensional sublayer
thicknesses with and without heat transfer using equations
(20) and (21).

heat transfer and thus the suspension Nusselt number
decreases under the particle loading ; particularly, its
effect is predominant for the loading ratio near unity.
Computed mean temperature profiles of the gase-
ous phase for various relative particle sizes at x =
3.048 m downstream from the thermal entrance
are shown in Figs. 3(a)~(c) with the solids—gas loading
ratio as a parameter, When the loading ratio increases,
the temperature in the core region becomes lower than
that of clean gas (Z = 0). However, the temperature
near the wall region significantly varies according to
the relative particle size and loading ratio. Because
the temperature difference between the gaseous and
particulate phases in Boothroyd and Haque’s exper-
iments [6, 7] is small, the temperature profiles of the
particulate phase are not represented in this paper.
Figure 4 displays the spatial distributions of particu-
late phase density normalized by that at the centre-
line for d,/D =197x10"* and 5.91 x 10~*. From
this figure, it can be seen that the particles distribute
nearly uniformly for small relative particle size. How-
ever, for high relative particle size, particles are more
concentrated in the core region. Note the sharp vari-
ation of the particulate phase density near the wall
region as shown in details in the inset of Fig. 4, which
is qualitatively consistent with the Lagrangian simu-
lation of Kallio and Recks [26] (see Fig. 5 in ref. [26]).
Figures 5(a) and (b) represent the mean axial
velocity profiles of the gaseous phase normalized by
the centreline mean velocity of the clean gas in
dp/D = 1,97 x 107 * and 5.91 x 10 ~*. As loading ratio
increases, the centreline velocity increases, while the
velocity near the wall layer decreases. Because part of
the heat is transferred to the particulate phase, the
bulk temperature of the gaseous phase is lower than
that of clean gas flow. Therefore, the density at the
bulk temperature is higher than that of clean gas flow.
Thus, the mean axial velocity of the gaseous phase
with particle loading is always slower than that of the
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380
360 |

340 ¢

Ts(K)
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2800 i i i i 4 i i A i
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(c) dp/D=5.91x107*

F16. 3. Mean temperature profiles of the gaseous phase for

various relative particle sizes and loading ratios at x =

3.048 m from the thermal entry: (a) d,/D = 1.97x 107",
(b) dy/D = 2.95%x107*%; (c) d,/D = 5.91 x 107*,

clean gas flow from the mass continuity of the gaseous
phase.

Dependency of the centreline turbulent Prandtl
number (Pry). on the loading ratio and the relative
particle size are calculated from equation (24) and the
results are shown in Fig. 6. which reveals that the
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FIG. 4. Normalized spatial distributions of particulate phase
density for various relative particle sizes and loading ratios.

turbulent Prandtl number decreases monotonically
with increasing Z and decreasing 4,/D. Such an
appreciable decrease in Pry, implies that loading of
particles in the gas stream makes the transfer of energy
by the bulk fluid much faster than that of momentum.
Note that the suspension turbulent Prandtl number
in the present study includes a heat capacity-density
ratio p,C, /psC,, as in the experimental correlation of
Michaelides and Lasek [11] (see equation (11) in ref.
(11]).

Figure 7 depicts the radial distributions of the tur-
bulent Prandtl number. It can be seen that the tur-
bulent Prandtl number in the suspension is much
smaller than that of the clean gas in the whole region,
and that it is nearly constant in the core region, while
it rapidly increases approaching the wall. For large
relative particle size, the location at which Pry, rapidly
increases moves to the pipe core due to the increase
of the sublayer thickness as in Fig. 2.

Figures 8(a) and (b) show comparisons between the
experimental [6] and computational results for axial
variations of the suspension Nusselt numbers under
various loading ratios. The solid lines are the present
computational results and the symbols indicate exper-
imental data, both of which are in satisfactory agree-
ment with each other.

Finally, the computed axial variations of the wall
temperature and the bulk temperature of the gaseous
phase are drawn in Figs. 9(a) and (b). When the
solids—-gas loading ratio is increased, it can be seen that
the bulk temperature of the gaseous phase increases
slower than that of the clean gas, while the comparison
of the wall temperature variation under particle load-
ing with that of clean gas does not show any consistent
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0.5
0.4
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0.2 I
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r/R
(b) dp/D=5.91x10"*

F1G. 5. Normalized mean axial velocity profiles of the gaseous
phase for various relative particle sizes and loading ratios:
(@) dp/D = 1.97x107*; (b} d,/D = 591 x 107 %,

1.0
0.9 —— :dp/D=5.91x10"*
] O — :dp/D=2.95x10"*
S AN :dp/D=1.97x10"*
06}
o5}
0.4}
o3}
o2}
oa}
0.0

(P , )c

Loading Ratio, Z

F1G. 6. Predicted turbulent Prandtl number in the core region
for the gaseous phase as a function of loading ratio and the
relative particle size.
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FiG. 7. Predicted turbulent Prandt]! number distributions for
the gaseous phase for different relative particle size.

trend. The latter comparison is rather complicated
and must be explained with the aid of the information
about the sublayer thickness and the heat capacity-
density ratio ppC,,p/prm, which are two important
factors for suspension heat transfer. Increase of the
sublayer thickness leads to the reduction of the sus-
pension heat transfer, while that of the heat capacity—-
density ratio augments the heat transfer. From Fig. 2,
for the loading ratio near unity, the sublayer thickness
significantly varies according to the relative particle
size, while the effect of heat capacity-density ratio
is relatively small. Therefore, if sublayer thickness
increases, the wall temperature of the gaseous phase
becomes higher than that of clean gas. For higher
particle loading. the effect of p,C, /p;C, becomes
more important, while the variation of the sublayer
thickness is relatively small. Therefore, if the latter
is the case, variation of the wall temperature of the
gaseous phase becomes more dependent on the heat
capacity-density ratio, and consequently. the wall
temperature of the suspension becomes lower than
that of clean gas flow.

CONCLUSIONS

In order to investigate numerically the heat transfer
of gas-particle two-phase flows in a vertical pipe,
Lumley’s drag reduction theory and a new thermal
eddy diffusivity model are employed in a previous
two-fluid model. The thermal eddy diffusivity model
for the gaseous phase was derived from an approxi-
mate balance equation for the mean temperature vari-
ance #7 of the gaseous phase. It turns out that there
are two important factors for the suspension heat
transfer; one is the sublayer thickness and the other
is the heat capacity-density ratio p,C, /pcC,,. Appli-
cation of the proposed two-fluid model to several
suspension heat transfer problems under various con-
ditions yield satisfactory predictions for the depen-
dency of Nusselt number on the relative particle size,
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{(b) dp /D=5.91x10"*

F1G6. 8. Comparisons of predicted axial variations of the

suspension Nusselt numbers at Re = 5.3 x10* with the

experiments of Boothroyd and Haque [6]: (a) 4./D =

295x107%; (b) d,/D=3591x10"% (Slding ordinate
scales used.)

particle loading ratio and on the axial distance from
the thermal entry.

As relative particle size increases, the suspension
Nusselt number is significantly reduced. The addition
of solid particles to the flowing gas in a pipe affects the
size of the sublayer thickness and the heat capacity—
density ratio. The major cause of decrease in the sus-
pension Nusselt number at low particle loading is
mainly due to the increase of the viscous sublayer
thickness caused by the suppression of turbulence
near the wall. But, in high loading, the effect of the
heat capacity—density ratio becomes more important
and augments the suspension heat transfer, The effec-
tive non-dimensional sublayer thickness with heat
transfer is thinner than that without heat transfer. As
loading ratio increases, the temperature in the core
region becomes lower than that of the clean gas. The
suspension turbulent Prandtl number of the gaseous
phase is affected by the heat capacity—density ratio
and the ratio of times scales t*/4. As the ratio p,C), /
p.C, increases, the suspension turbulent Prandtl

f43
number of the gaseous phase considerably decreases.
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F1G. 9. Computed axial variations of the wall and the bulk
temperatures of the gaseous phase: (a) d,/D = 2.95x 1074,
(b) d,/D =591 x10"".

All these findings from the computed results could
be confirmed by comparing them with available ex-
perimental data.
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ANALYSE DE TRANSFERT THERMIQUE DANS UN TUYAU TRANSPORTANT UNE
SUSPENSION DIPHASIQUE GAZ PARTICULES

Résumé—Un modele a deux fluides utilisant le concept de diffusivite turbulente ct la theorie de réduction
de traince selon Lumley est proposé pour analyser le transfert thermique de I'¢coulement turbulent gaz

particules diluées dans un tuvau vertical avee flux thermique pariétal uniforme. Le modéle de diffusivité
thermique turbulente est une fonction du rapport des produits gC, (capacite thermique masse volumique)
de la phase gazeuse et de la phase de particules et aussi du rapport du temps de relaxation thermique a
celui de la turbulence. La théorie de Lumlcy est appliquée pour trouver la variation de I'épaisseur de la
sous-couche visqueuse qui dépend du rapport de charge de particules Z et de la taille relative de particules
d,; D. Aux faibles rapports de charge, la taille de I'épaisseur de la sous-couche visquese est importante pour
le transfert thermique de la suspension, tandis qu'aux plus fortes charges, Peffet du rapport PG nG,
est dominant. La cause principale de la décroissunce du nombre de Nusselt de la suspension aux
faibles rapports de charge cst due a 'augmentation de I'épaisseur de la sous-couche visqueuse, clic-méme
due a la suppression de la turbulence pres de la paroi par la présence des particules solides. Les
nombres de Nusselt calculés d partir de ce modeéle sont en accord satisfaisant avee les données expérimentales

a la fois d U'entrée du tube et dans les régions pleinement établies.

BERECHNUNG DES WARMEUBERGANGS IN EINEM ROHR MIT EINER
ZWEIPHASIGEN GAS/PARTIKEL-SUSPENSION

Zusammenfassung—Es wird ein Zwei-Fluid-Modell fiir die Berechnung des Wirmeibergangs in einer
turbulenten Stréomung aus verdiinntem Gas und Partikeln in einem senkrechten Rohr bei konstanter
Wirmestromdichte an der Wand vorgeschlagen. Dabei finden das Konzept der wirbelbedingten Schein-
temperaturleitfihigkeit und die Theorie der Widerstandsverminderung nach Lumley Verwendung. Es
wird gezeigt, daBl das Modell der Scheintemperaturleitfahigkeit vom Verhiltnis der volumetrischen Wirme-
kapazititen der Gasphase und der Partikel abhingt, aulerdem vom Verhéltnis der thermischen Relax-
ationszeit-Skala zu derjenigen der Turbulenz. Lumley’s Theorie wird dazu verwendet, die Abhdngigkeit
der Dicke der viskosen Unterschicht vom Beladungsverhiltnis Z mit Partikeln und von der relativen
PartikelgréBe o,/ D zu ermitteln. Bei kleinen Beladungsverhiltnissen ist die Dicke der viskosen Unterschicht
wichtig fur den Wirmeiibergang in der Suspension, wihrend bei groBen Beladungsverhéltnissen der Einflufl
des Verhiltnisses der volumetrischen Wirmekapazitaten dominiert. Der Hauptgrund fiir das Abnehmen
der Nusselt-Zahl der Suspension bet geringen Beladungsverhaltnissen ist auf ein Anwachsen der Dicke der
viskosen Unterschicht zuriickzufithren, was auf einer Unterdriickung der Turbulenz nahe an der Wand
infolge der Anwesenheit von Feststoffpartikeln zuriickzufithren ist. Die mit dem vorgestellten Modell
berechneten Nusselt-Zahlen stimmen befriedigend mit verfiigbaren Versuchsdaten iiberein ; dies gilt sowohl
im Einlaufgebiet wie auch im Bereich der vollstidndig entwickelten Stromung.

AHAJIM3 TEIUJIOIIEPEHOCA B TPVBE C JABVX®A3HON CMECBHIO T'A3A U YACTHIL]

Annotamug—IIpenioxkena “Moaenp ABYX XKHAKOCTEH”, HCHONb3YIONIasA NOHATHE TYpOyJIeHTHOH Temie-
paTypONpOBOAHOCTH H TEOPHIO YMEHBLICHHS CONpOTHBJIeHHS JlambiM, Iis aHanW3a TensioNepeHoCa
TypOyJICHTHOrO NOTOKA ra3a H YacTHL B BEPTHKaJNBHON Tpybe C NOCTOSHHBIM TEILIOBHM IIOTOKOM HA
crenke. Haiigeno, yro TypOyJieHTHas TeMOepaTypOOPOBOMHOCTh SBJIAETCS (GYHKUHEH OTHOMICHHS
NPOM3BEAEHUA TEIUIOEMKOCTER M ILIOTHOCTEH 4acTHN M ra3oobpasnoii gasm fC,, a Takke OTHOUICHHSA
BpPEMEHHBIX MacinTaboB TerutoBoif penakcaiun U Typ6ynentHocTH. Teopus Jlambnn npamersercs ans
onpefeseHus U3MEHEHHs TOJIMIHMHBE BA3IKOTO MOJICION B 32BHCHAMOCTH OT KOHHEHTPALMH 4acTHI Z M MX
OTHOCHTEJIbHOTO pasmepa d,/D. TIpu HH3KOH KOHUCHTPAIMH TOJILHHA BS3KOTO IOJICIOA ABJIACTCH
CYLIECTBEHHOM Ul TEIUIOMEPEHOCA B CYCTIEH3HsAX, B TO BpeMsl Kak npH GoJiee BLICOKHAX KOHLEHTPaHsAX
JOMHHHDYIOHIee BIMAHHE OKa3bIBacT OTHOWCHHE p.C,, /5 C, . HaiizeHo, 4T0 OCHOBHO¥M NMpHYAHON yme-
HblueHnd Yucia HyccenbTa B ciiyyae HH3KOH KOHIICHTPAIMH SBJISETCS POCT TOJHUHHB! BA3KOTO MOACION
3a cYeT HOAaBJEeHHS TYpOY/NeHTHOCTH BOJIM3M CTEHKH TBepAbIMH YacTHUAMH. 3Havenus uncaa Hycce-
JIbTa, PACCYATAHHBIE MO NPEUIOKCHHOH MOIETH, YAOBJETBOPHTENBHO COTJIACYIOTCH ¢ HMEHOIUMMHCS
IKCIePHMEHTAIBHBIME JaHHBLIMH JUIS BXOAHOI'O Y4acTKa TPYOhl H MOJHOCTBIO Pa3BHTHIX 06nacTel.



